Applying the imprecise Dirichlet model in cases with partial observations and dependencies in failure data

نویسندگان

  • Matthias C. M. Troffaes
  • Frank P. A. Coolen
چکیده

Imprecise probabilistic methods in reliability provide exciting opportunities for dealing with partial observations and incomplete knowledge on dependencies in failure data. In this paper, we explore the use of the imprecise Dirichlet model for dealing with such information, and we derive both exact results and bounds which enable analytical investigations. However, we only consider a very basic two-component system, as analytical solutions for larger systems will become very complex. We explain how the results are related to similar analyses under data selection or reporting bias, and we discuss some challenges for future research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation and selection of sustainable suppliers in supply chain using new GP-DEA model with imprecise data

Nowadays, with respect to knowledge growth about enterprise sustainability, sustainable supplier selection is considered a vital factor in sustainable supply chain management. On the other hand, usually in real problems, the data are imprecise. One method that is helpful for the evaluation and selection of the sustainable supplier and has the ability to use a variety of data types is data envel...

متن کامل

Analysis of Local or Asymmetric Dependencies in Contingency Tables using the Imprecise Dirichlet Model

We consider the statistical problem of analyzing the association between two categorical variables from cross-classified data. The focus is put on measures which enable one to study the dependencies at a local level and to assess whether the data support some more or less strong association model. Statistical inference is envisaged using an imprecise Dirichlet model.

متن کامل

The Efficiency of MSBM Model with Imprecise Data (Interval)

Data Envelopment Analysis (DEA) is a mathematical programming-based approach for evaluates the relative efficiency of a set of DMUs (Decision Making Units). The relative efficiency of a DMU is the result of comparing the inputs and outputs of the DMU and those of other DMUs in the PPS (Production Possibility Set). Also, in Data Envelopment Analysis various models have been developed in order to...

متن کامل

Non-discretionary imprecise data in efficiency Measurement

This paper introduces discretionary imprecise data in Data Envelopment Analysis (DEA) and discusses the efficiency evaluation of Decision Making Units (DMUs) with non-discretionary imprecise data. Then, suggests a method for evaluation the efficiency of DMUs with non-discretionary imprecise data. When some inputs and outputs are imprecise and non-discretionary, the DEA model becomes non-linear ...

متن کامل

APPLICATION OF DEA FOR SELECTING MOST EFFICIENT INFORMATION SYSTEM PROJECT WITH IMPRECISE DATA

The selection of best Information System (IS) project from many competing proposals is a critical business activity which is very helpful to all organizations. While previous IS project selection methods are useful but have restricted application because they handle only cases with precise data. Indeed, these methods are based on precise data with less emphasis on imprecise data. This paper pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2009